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We present a dissipative algorithm for solving nonlinear wave-like equations when
the initial data is specified on characteristic surfaces. The dissipative properties built
in this algorithm make it particularly useful when studying the highly nonlinear
regime where previous methods have failed to give a stable evolution in three di-
mensions. The algorithm presented in this work is directly applicable to hyperbolic
systems proper of electromagnetism, Yang—Mills, and general relativity theories.
We carry out an analysis of the stability of the algorithm and test its properties
with linear waves propagating on a Minkowski background and the scattering off a
Scwharszchild black hole in general relativity 1999 Academic Press
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I. INTRODUCTION

When modeling nonlinear problems, dissipative algorithms have provided researct
with an extremely valuable tool since usually most nondissipative schemes fail to prod
a stable evolution. More precisely, when using neutrally stable algorithms, instabilit
often arise which spoil the evolution. The addition of artificial dissipation removes the
instabilities by “damping” the growing modes of the solution in a somewhat controlled we
Therefore, its inclusion in a discretization scheme provides a practical and economical
of achieving longer evolutions.

The most widely used algorithms with this property are the family of Lax schem
[1], whereby adding to the equatien = —au x a term proportional ta xx one obtains a
stable discretization of the system that would otherwise be unstable. However, one m
correctly ask whether this is not tantamount to solving a completely different problem. T
beauty of these methods is that the proportionality factor depends on the discretization
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and in the continuous limit the approximation to the modified PDE results in a consist
approximation to the original one.

Although there is much experience with these kinds of schemes, most of the stanc
dissipative algorithms have been tailored for Cauchy initial value problems, where i
tial data is provided at one instant of time and evolved to the next instant by me:
of the evolution equation. However, in radiative problems, it is sometimes more con
nient to choose a sequence of hypersurfaces adapted to the propagation of the w
and therefore, one adopts a foliation adapted to the characteristics of the PDE ul
study.

In the present work, we present a new algorithm adequate for hyperbolic systems.
underlying strategy of the proposed algorithm is quite different from the conventior
Cauchy-type methods. Rather, it is inspired by analytical concepts developed in the 1¢
[2—4] for studies of gravitational radiation in general relativity and in their subseque
numerical integration$.The main features of this approach are the use of characteris
surfaces (for the foliation of the spacetime) and compactification methods (that enc
the inclusion of infinity in the numerical grid) to describe radiation properties. Althoug
evolution algorithms (for systems possessing some kind of symmetry) developed wit
this approach proved to be successful in the linear and mildly nonlinear regime [6-8], tl
produce unstable evolutions when applied to the general case, which shows the nee
devising algorithms that could be applied in this situation. In the present work we pres
a new algorithm having dissipative properties, making it a valuable tool to study syste
where strong fields might be present.

In Section 2 the details of the algorithm for the wave equation are presented anc
stability properties discussed. Section 3 is devoted to treat a model problem which sh
how the dissipative algorithm might be a useful tool for numerical investigations in gene
relativity. Finally, in Section 4 we describe two particular applications of this algorithm i
the numerical implementation of general relativity.

Il. THE ALGORITHM

Waves of amplitudg traveling in one spatial direction with unit speed obey the familia
equation

gitt —gxx =0 1)

which can be solved in the regioR={(t, X)/t > tg, x € R}, assumingg(t =tp, X) and
g.:(t =to, X) are given. If, instead, one is interested in solving the problem restricted to t
regionx € [a, 0o), boundary data must also be provided correspondingttox = a). The
analysis of this problem can be described in a simple way in terms of the characteristic
this equation, which are given lix — x,) = =t through each spatial poirg.

In particular, when solving Eqg. (1) in the regi@®y. The domain of dependen@®: of
a point(ty, Xp) is given byD¢ =S¢ N R¢, with Se naturally defined by the characteristics
passing througlt;, X;) as

Se = {(t, %) such that <t and(t — t;)*> — (x — X1)? > 0}; )

1 For a detailed account of the developments in the characteristic formulation see [5].
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R¢ is the region to the future of

e the linet =to, or
e the region defined bya], co) or x €[a, b] (wherea € R). In these cases, boundary
conditions must be imposed:at=a (andx =b in the latter case).

Suppose one introduces a coordinate system adapted to the characteristics by say
t —x, r =x); then, Eq. (1) reduces to

29.ur — 9, =0. 3)

Further, one can then choose to foliate the spacetime by a sequence of character
obtained by holding the (retarded) tinbe= const. One can then definecharacteristic
initial value problem where Eq. (3) is solved, provided thgtu = u,, r) is given. (Note
thatg,,(u=uo, r) need not be provided as in the Cauchy initial value problem).

Itis straightforward to check that a solution of Eq. (3) is expressibtgag ) = F (u) +
G(u+ 2r) (whereF andG are smooth functions). Physically(u) describes waves prop-
agating in thetr direction (outgoing waves) ar@d(u + 2r) describes waves propagating
in the —r direction (incoming waves). Then, if one imposes the condition of pure outgoit
waves, the solution must be of the forgn= F (u); hence, along each characteristic the
value of the function is constant. Notably, boundary data-aD can be given arbitrarily
since purely outgoing waves at= up will not reachr = 0. More generally, boundary data
consistent with the incoming waves must be prescribed=a0.

Itis importantto note the domain of dependence for this problem. When solving Eq. (3
the regioriR ¢, the domain of dependen¢B.) of a point(uy, ry) is defined byD, = S. N R,
where

Se = {(u, x) such thau < us and(u — ug)? + 2(u — u)(r —ry) > 0}. (4)

However, if the regiorR. is chosen to be the future of the line= ug, D, extends indef-
initely to the past. Therefore, the characteristic approach reqRigde have a boundary.
Thus, one define® as the regionu > uy, r €[a, co)) (with a> 0). Figure 1 illustrates
the domains of dependence corresponding to each formulation.

For hyperbolic systems with two or more spatial dimensions, the manner in which
characteristics determine the domain of dependence and lead to evolution equatiol
qualitatively the same. Also, the use of coordinates adapted to them provide a tidy way
studying the system. For instance, in three dimensions, the wave equation is given by

Wi —Wux — WYy —W¥,,=0, %)
which, in term of spherical polar coordinatésr, 0, ¢) has the form

rWy — (W), —L2W/r =0, (6)
whereL? denotes the angular momentum operator

L2g — (sin(@)W¥ 4) o W gg
T sin) Sirf(6)

(7)
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X

FIG. 1. Domains of dependence in the Cauchy and characteristic initial value problems.

Introducing coordinate@i =t —r, r, 6, ¢) which define a natural inner boundaryrat 0,
Eq. (6) takes the form

2
21 W) ur — (W) 11 = Lr—q’ ®)

Thus, by definingy = r ¥ and considerind.>¥ /r as a source term, Eq. (8) formally looks
like the one-dimensional system. Therefore, from now on we restrict our analysis to t
latter case and extend our results to the three-dimensional case in Section 4.

The formal integration of (3) proceeds by an integration in ithairection on each
u=const surface and then evolves to the next level. This reformulates the integratio
the characteristic formulation as an “evolution” in the radial direction and then anott
in the u direction (as opposed to the evolution of a “whole” instant of time to the ne:
one typical of the Cauchy evolution). Hence, standard dissipative schemes intendec
Cauchy-type evolutions (like the family of Lax algorithms) are not directly applicable i
the characteristic formulation of the PDE and the addition of artificial viscosity to the syste
must be reformulated.

In the numerical implementation of Eq. (3) a useful discretization was introduced in !
This scheme is basically a second-order approximation based on finite difference technic
Assuming the grid discretization is given by =nAu andr; =i Ar, the derivatives may
be discretized as

1 1
T R I I i R

Qurli—12 = AUAT ) )
mryz _ O =290+ gt + gl — 297 + gl
OrliZe2 = Ar2 . (10)

The resulting scheme (which we will refer to as GIW) is a second order in time, seca
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order in space accurate algorithm. Notably, the Von Neuman analysis shows that the (
scheme has a unitary amplification factor (i.e., a neutrally stable algorithm), indepenc
of the values ofAu and Ar. This would imply that the algorithm is unconditionally stable
whichis, atfirst sight, puzzling. This might be explained by the implicit local structure of tf
algorithm (since it involves three points at the upper time level) and, as such, a local stab
analysis need not give a condition on the discretization size. Nevertheless, the algorith
globally explicit as the evolution proceeds by an outward march from the origin. Hence,
algorithm does require the enforcement of the CFL condition to ensure that the numer
and analytical domains of dependence are consistent.

The CFL condition for the system can be easily obtained. The field at the grid point
(uy, r1) depends critically on the field value ai; — Au, r; + Ar) (since all the points,
where 0 < r <ry, are trivially included in the discretization). The requirement for the
numerical domain of dependence to include the analytical domain of dependence-is
2AUAr < 0; therefore, the CFL condition will be satisfiedAfu < 2Ar.

The GIW algorithm has been employed successfully in the characteristic formulat
of general relativity (G.R.) assuming either spherical symmetry [9, 10], axisymmetry [
or very small departures from spherical symmetry [7]. However, when considering m
general problems, as is often the case with neutrally stable schemes, roundoff errc
parasitic modes are enough to cause ripples in the solution which often lead to an unst
evolution. As stated earlier, adding dissipation to the PDE constitutes a way to alleviate
problem [1]. We now show that a rather simple modification of (3) can be used to obtai
consistent discretization with dissipative properties.

We start by considering the equation

2 432 g =0 (11)
Our — Qrr +4/ Emg,rrr =

(the 4/3 factor is included for convenience). A straightforward discretization of (11) |
obtained by the described approximation far. (9) andg,, (10) and by approximating
the third derivative at the poirth, i — 1/2) as

1
O.rrr |ir171/2 = F (gin+l - 3gin + 3girll - gin72)~ (12)

In analogy to the Lax method, the inclusion of this extra term leads to a consistent
ference approximation of Eq. (3); this is, the difference approximation converges forme
to the differential equation in the lim{tAu, Ar) — 0. In fact, it is straightforward to check
that the resulting approximation is accurate of orflerAr?), O(e At)}.? An important
feature of the resulting algorithm (which we shall call DA) is its dissipative features, whi
make it particularly useful. The stability properties of this algorithm can be easily obtain
by introducing Fourier modes such thgpt e3Ueki/A" | After some algebra one obtains

S(i + 2a sin(kAr /2) e kAT/2)

=i ((1 —e) + ge(4 cog(kAr/2) — 1)) — 2a sin(KAr /2) e kA2, (13)

2 Contrary to the Lax method which exhibits strict second-order convergence in space and time.
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FIG.2. The characteristic scheme for the exterior problem. Initial data is givévy,@md boundary data dn.

where S=¢e’¥ anda = Au/(4Ar). Therefore, the equation governing the growth of the
solution’s modes is

4e Sirt(KAr /2)

2 _
ISF=1+ 3(1 — 4o (1 — &) SiP(KAr /2))

(—2 4 SIrP(KAT /2) (4o + 4/3€)).  (14)

Now, since 4 (1 — o) sif(KAr /2) < 1 (for « < 1/2) the scheme will be stable if, 8¢ <
3/2(1— 2a). Moreover,|S| < 1 ask — 7/ Ar, indicating that the high frequency modes are
effectively “damped,” whilg S| — 1 ask — 0.

The obtained discretization can also be thought of as an approximation to the origi
equation (3) (i.e., without the addition of the extra term), where the finite differencing
g.ur includes four points on theth level as

n+1
ntr2  Orlit2 — 9rliiye

QurliZ1/2 = AU
T e ] - VR -
T AUATr AUAT ’

which can be regarded as a weighted average of the derivatiges at 1/2) obtained from
field values at the pointgn, i), (n,i — 1)} and{(n,i + 1), (n,i —2)}. In the next section,
we illustrate how this algorithm produces a stable discretization when the original strat
(corresponding te = 0) fails.

Ill. APPLICATION IN A“TOY PROBLEM”

In this section we study the stability properties of an equation bearing close resemblz
to the nonlinear evolution equation encountered in the characteristic formulation of gen
relativity (which will presented in the Section 1V),

ZG,ur - G,rr = GG,uG,r- (16)

In order to keep track of the nonlinearity of the equation, we introduce the paraimete
(with & < 1), such thatG = Ag; hence, Eq. (16) becomes

20ur — Grr = )»Zgg,ug,r- (17)
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In particular, note that the principal part of Eq. (17) corresponds to the wave equati
Also, it reduces in the the linear cage? = 0), to the wave equation. Consequently; one
might expect the GIW discretization to lead a stable scheme.

However, this is not the case, as can be demonstrated by the following analysis. F
in order to simplify the study of the stability of this nonlinear problem, linearize the
PDE with respect to the previous time sfdjpto obtain a more manageable equation. In
this linearization, we approximate the valuegyaindg, with respect to thath level, but
g.u is centered in between the levels. The resulting finite difference approximation is

Au

aar (o 2g - g g, 200 g y)

gt — gt g g+
— )\2} (g_n + g_n )(g_n _ g_n )(gn+l + g_n-&-l _ g_n _ g_n ) (18)
- 8 i i—1 i i—1 i i—1 i i—1/*

Finally, we introduce the Fourier modgs= e>“ék" and solve fol S|?, obtaining

16022 sin(K)2(1 4+ cogK))
5 ,

ISP =1+ (19)

wherea = Au/(4Ar), K =kAr, and

D = 16+ A*(1 + cogK))? — 81 %(a sirP(K) 4+ cog K )(1 + cosK)))
+320(1 — a)(cogK) — 1). (20)

It is not difficult to check thaD is a positive quantity for

1 A2 48+ 24— 42
O<a<-— "4 -—-—" 21
o=@ " 8 (1)

(which will be the case if the CFL condition is satisfied). Thus, the valu&os always
larger than 1, indicating that this discretizatioruisconditionally unstablelt is remark-
able that the simple addition of some nonlinear terms, even when they do not change
equation’s principal part, completely break an algorithm that would otherwise be stable

We now modify the wayg r is discretized by introducing dissipation as dictated by th
DA scheme, i.e.

Qur = (0 -9 1 —(Q—-eg'—g";+€(g1—9",)/3). (22)

AUAT
With this simple modification, the value ¢8> now becomes
4(cogK) — 1)N

2 __
IS =1+ 5 , (23)
where
N = —4ar?(1+4 cogK))? + (4 + e(cogK) — 1)
+22cogK)(cosK) + 1) + da(cogK) — 1)). (24)

SinceD > 0 and co$K ) — 1 < 0, the condition for stability is thal > 0. Givenq, thisis a
condition one, or vice versa. For instance df=1/8 andx = 2-/2, the discretization will
be stable if B < ¢ < 1. On the other hand, if we choose=1 ande =1/4, N > 0 will be
satisfied ifa < %. Figure 3 shows the value ¢§| for different choices ot for a givena;
the effect of the added dissipation can be clearly seen.
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FIG. 3. Plots of|S| corresponding to different choices efandi. A (. =0,¢=0); B (x=0.02 ¢ =0);

C(A=0.02 ¢ =0.02) and D(» =0.02, ¢ = 0.2) whichillustrates how adding artificial dissipation ensures stability.
However, as can be seen in D for a high value ttie damping of the high frequency modes might be severe.

IV. APRACTICAL APPLICATION: THE CHARACTERISTIC
FORMULATION OF G.R.

When solving Einstein equations, one can take advantage of the coordinate invari
of the theory to simplify the modeling of a specific problem. In particular, one is free
choose a foliation of the spacetime that is better suited to the problem.

In the numerical implementation of G.R., the most common approach is to choos
foliation by spacelike hypersurfaces at constant times. In this approach, Einstein ec
tions form a second-order PDE system for th&insic geometryof each surface and its
embedding in the spacetime, tertrinsic curvature Einstein equations are split into two
distinct sets of equations. One set consistsarfstraintequations that limit the possible
configurations of the field variables on each hypersurface. The second set constitute:
evolutionequations that determine the development of the field variables onto the n
hypersurfacé.

3 For a complete description of this formalism see [11].
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The main drawback of the numerical implementation of the Cauchy formulation is t
impossibility of having an infinite grid to completely cover the spacelike hypersurface
Thus, in practice, one chooses an exterior boundary in order to deal with a finite domain.
introduces further problems, since special conditions on the boundary must be impose
order to avoid reflections which spoil long-term evolutions. Although in the one-dimensior
case there are sound methods to achieve this (e.g., the Sommerfeld condition), in the ge
case, any local boundary condition still introduces reflections, turning the task of obtain
long accurate evolutions into an almost impossible one. A related problem arising from
outer boundary at a finite distance is that the radiation cannot be rigorously calculated.

When studying gravitational radiation a more natural choice adapted to the wave pi
agation is to adopt a sequence of characteristic hypersurfaces to cover the spacetime
approach is known as tlobharacteristic formulation of G.Rpioneered by Bondi and Sachs
[2, 3]. The main ingredients of this formulation are the foliation of the spacetime by
sequence of characteristic hypersurfaces and the use of compactification techniques (v
enable the inclusion of infinity in a finite grid) to rigorously describe asymptotic properti
of radiation [4]. The equations naturally split intypersurface equationsnd evolution
equationsWe now outline the main aspects of the numerical implementation of this form
lation (based on [7, 12], where a detailed description of the problem has been presented
employ the constructed algorithm to discretize the PDE equations governing the evolu
of the fields.

A coordinate system is introduced by labeling the outgoing lightlike hypersurfaces w
a parameteu, each null ray on a specific hypersurface is labeled witiA =2, 3), and
we choose as a surface area coordinate (i.e., surfaces-atonst have area ?). In the
resultingx® = (u, r, x*) coordinates, the metric takes the Bondi-Sachs form [2, 3]

ds? = —(e¥V/r —r?hagU”UB) du? — 2¢* dudr
—ZFZhABUBdUdXA+r2hABdXAdXB, (25)

whereh”Bhgc = 82 and dethag) = det(gag), With gag a unit sphere metric.
The metric components are re-expressed as

4
hao = E(m[J] + K),
4
hag = hg = E:S[J],
4 38
hss = E(K — NR[JD, (26)
P
Uz = EER[U],

P
U3 - ES[U],

whereP =sec(#/2) in standard angular spherical coordinateésy). Here, the metric is
expressed in terms of two reg andV) and two complexU and J) variables (where
K =+1+JJ). The complex field) measures the departure of spherical symmetry c
the surfaces given by =const andu = const,V represents the mass distribution of the
system g measures the expansion of the light rays, dnaieasures the shift in the angular
directions from one hypersurface to another (at constant



68 LUIS LEHNER

The hypersurface equations are expressed as

Br = Fp[J] (27)
U, = Fylg.J] (28)
(r’Q)r = FqlU. 8.J] (29)
V, = FR[Q.U, 8 7], (30)

where Q=r2e=2(JU , + KU, ) which is introduced to deal with a first-order system
of hypersurface equations. The functioRg, Fy, Fg, and Fy involve derivatives taken
only on a particular hypersurfacE’. Then, they can be easily integratedlifis known
on N\ (assuming consistent boundary conditions are provided) in the following way. T
integration strategy proceeds by first obtainjigrom Eg. (27), therlJ from Eqg. (28),
followed by the calculation of) using Eqg. (29), and finally/ using Eqg. (30). The evolution
to the next hypersurface is prescribed by a first-order (in time) equatiahtfaat takes the
form

\% Ju - =
200d) ur — ?(rJ),” = rJ<}’<U(J,rK —JK)) +C.C.> + RV, Q. U, 8,J3], (31)

whereF; involve derivatives ooV only.

A code that implements Einstein equations was written using (second-order) finite diff
ence approximations. Angular and radial derivatives are approximated along the follow
lines [12]:

e Angular derivativeswWe follow the formalism given in [13, 14]. To expedite the numer-
ical implementation of angular derivatives, instead of working with the standard spheri
angular coordinate®, ¢), we work in stereographic coordinates,

xA = (g, p) = (tan(8/2) cog¢), tan¥/2) sin(¢)), (32)

and angular derivatives are written in terms of the (complex differergiblpperators
and [15, 16]; for instance,

B _ B+ B
ag P

: (33)

This allows us to employ a set of numerical techniques introduced in [17] which are speci:
tailored to: (i) handle the numerical approximation of angular derivative operators a
(ii) deal with the fact that a single coordinate patch cannot be used to smoothly cover
sphere.

o Radial derivatives These are approximated via centered second-order differenc
along each null ray (i.e., holding® = consy; for instance,

ﬁin = /3in—1 + Ar F,Blin—l/Z' (34)

The evolution equation deserves special consideration. Its discretization (in betw
levelsn andn + 1) is obtained using dissipation in the following way: schematically, it cal
be re-expressed as

200 — (V/1)Grr = (@0 +C)+ Flf. 3,U. V1, (35)
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whereg = r J. The functionF; can be straightforwardly approximated at each grid poin
(n+1/2,i —1/2) to second-order accuracy. Then, in order to introduce dissipation
the algorithm, we proceed to consider a modified version (along the lines describe
Section 1),

Ar?
29y — (V/0)Qrr = (g u9r +cc)+Fy(B,3,U,V) +€ grrr (36)

We center the derivatives at the point+ 1/2, i — 1/2), as dictated by the DA scheme and
obtaing |,”_+11//22 by means of aniterative procedure. Inthe firstiteration wg set g |”+1/ 2
and get a first approximation gf ™ via the evolution equation. Then, we use this value tc
obtain a guess f@,ul?jllfzz which is then used to get a better approximationgdr. This
procedure is repeated a sufficient number of times to ensure convergence.
Unfortunately, when solving a three-dimensional problem, the computational requi
ments of integrating from the origifn = 0) are formidable. However, it is possible to start
the integration from a finite value of assuming consistent values @fU, Q, V, andJ
are known on this boundary (which is refered to as the worldtube boundary), as well as
value ofJ on an initial hypersurface [18].
To illustrate the usefulness of the presented algorithm, we apply it to model (i) t
propagation of linear waves on a Minkowski background and (i) the problem of scatteri

off a Schwarzschild black hole in three dimensions.

A. Linear Waves on a Minkowski Background

In the past, analytical solutions of linearized Einstein equations (in the characteri
formulation) have been found which describe waves propagating on a flat background
These solutions provide an important test bed for the algorithm, since the numeric
obtained solutions must converge to the analytic values given by

B=0, V=r (37)

with J andU obtained from a solutioq¥) of the scalar wave equation by

r? 2w,
=57 (38)
v 4+ 2W
U, = —2% (39)

In order to test the algorithm, we choose a solution of the wave equation in three dim
sions that represents an outgoing wave with angular momentain<06 of the form

_ (9.6 %
= (07) 2 (40)

whered, is the z-translation operator. The resulting solution is well behaved above tl
singular light conea=0.

Choosing initial data of very small amplitude ~ 10~%), we used these solutions to give
data atu=1 (with the inner boundary set & =1.5) and compared the numerical and
exact solutions over time for different valuesofThe computation was performed on grids
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FIG. 4. The logarithm of E| =|J™™ — J2"a| (the numerical and analytic values &f is shown for different
values ofe. Fore = 0.05 the evolution is stable, as opposed to the unstable evolutions corresponder emd
0.005.

of size Nx equal to 41, 53, 65 (with the number of angular poiNts= (Nx —1)/2+5,
and the ratioAu/(4Ar)=1/8). The L, norm of the error was calculated over the entire
grid and plotted against time for different values of the dissipation parameter. Figur
shows the logarithm of the error ih versus time (for runs witiNy = 65). Fore =0 the
evolution is unstable, as can be seen by the exponential growth of the erroeRd05 the
instability appears at a later time, also with an exponential growth. However Z£d@.05
the run proceeds stably and the error remains under control. It is important to note that
magnitude of the dissipation needed to achieve a stable run is very small and therefore
“damping” of the solution in not severe.

B. Nonlinear Scattering Off a Schwarzschild Black Hole

The characteristic initial value problem on an outgoing null hypersurface requires ini
boundary conditions on the worldtube. Here we consider an example in which the in
boundaryI" consists of an ingoing nullcone (see Fig. 5). We adopt coordindteshich
follow the ingoing null geodesics and foliate (chosen to correspond to ingoing=2m
surface in a Schwarzschild spacetime) by slices separated by constant patahnetezse
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r=2m

FIG.5. Scattering off a Schwarzschild black hole. The bold dashed line illustrates the incoming pulse.

coordinates, the Schwarzschild line element takes the form
2m 2 2 A 4B
ds? = — 1_T du® —2dudr +r?gag dx” dx°®. (41)

The initial data correspond to settidg= 0 as data ow = 0, with the boundary conditions
B=U=Q=0andV =r —2monT.

We pose the nonlinear problem of gravitational wave scattering off a Schwarzsct
black hole by retaining these boundary conditiondorout we choose null data at=0
corresponding to an incoming pulse with compact support,

a1 Byt B)t S A Y, ifr € [Ra, Rol

0, otherwise

Ju=0,r,x" =

(42)

wherey Y| n, is the spin-two spherical harmonic [15].

The code was run for different values pfunder different choices of the dissipation
parameter. In all cases, unstable evolutions resulted from the cheid® however, for
nonzero values of, the code ran without any stability problem, as illustrated in Fig. 6 (fo
arunwhere.=11=2 m=0).

Yet, as expected of any dissipative algorithm, the solution decreases in amplitude \
time. This highlights the need to carefully tune the value.dflotwithstanding this fact, it
is important to stress once again that this set of runs would not have been possible wit
dissipation.

This problem was originally studied in the perturbative regime by Price [19]. There
no known analytic solution to the problem in the nonlinear regime and applying numeri
methods is the only way to study it. The accuracy of the dissipative scheme can be asse
indirectly by inspection of the gravitational waves produced by the system. Gravitatiol
waves can be described in terms of tpamlarization modegrefered to aplus andcross

4Recall that the data on the initial hypersurface can be chosen freely in the characteristic formulation [5].
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FIG. 6. Plots ofthe field variabld at a representative angle vs a compactified radial coordinate/ (1+r).
The value of the massiis = 0.5, the amplitude of the initial pulseis=5, R, =4, andR, = 8. The runs correspond
to different choices of. The solid lines indicates the initial datawet 1. (a) shows the run far= 0; after a short
time the obtained values diverge. (b) corresponds to the clacic® 005, showing a run that neither show signs
of instability nor much damping of the pulse. (c), in turn, corresponds=t®.02, although there is no sign of
instability the solution has been damped considerably.

modes) [11]. However, when considering spacetimes with axisymmetry, the cross m
must vanish and this fact can be used to test the algorithm. Calculating the gravitationa
diation is a rather involved problem that exceeds the scope of this work. A set of algorith
to numerically calculate the gravitational wave forms was constructed in the characte
tic formulation in [12] and tested under different situations. We used these algorithms
the present work to calculate the polarization modes for the choice\r and with an
axisymmetric pulse witth=2, m=0 as the initial data. The cross polarization mode ac
tually converges to zero in second order, indicating an accurate discretization of Eins
equations, as can be seen in Fig. 7.
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FIG. 7. Convergence of the cross polarization mode to zero (in thesesrus chosen equal tar). The
slope is 1.99, confirming second-order accuracy of the obtained wave form.

V. CONCLUSION

The algorithm described in this work represents a valuable tool for the study of nc
linear problems in the characteristic formulation. Its use enables long-term evolution t
would otherwise be impossible. Yet, there is still much room for improvement as t
number of numerical techniques adapted to characteristic-type evolutions is scarce
opposed to the situtation in the Cauchy-type evolution, where one has at hand a ¢
number of algorithms). The variety of physical problems, where propagating waves
to be described, highlights the need of further investigations on “characteristic” al
rithms.

Of particular interest is the application of these types of algorithms to the charact
istic module constructed to model the collision of a binary black hole self-gravitatir
system. In this problem, it is imperative to have robust enough schemes capable of c
ing with highly nonlinear fields. The complexity of the problem inspired the creation ¢
the Binary Black Hole Grand Challenge Alliance, where a group of U.S. universities a
outside collaborators are joining efforts to tackle the problem [20]. A strategy to study tl
problem is a “hybrid” scheme that implements at the same time a Cauchy evolution |
the region near the black holes) and a characteristic evolution (for the exterior regic
This approach is calle@auchy—characteristic matchingCM) [21, 22, 8], and in princi-
ple, its implementation manages to avoid the problems and to exploit the best feature
each evolution scheme. CCM has been shown to work (and outperform traditional ot
boundary conditions) in situations where special symmetries were assumed [23, 10]
its full three-dimensional application in G.R. is currently under study. The characteris
code is one of the pieces of this bigger algorithm and the need for robust performa
prompted this investigation. However, its use is not limited to G.R. Any hyperbolic sy
tem describing waves will have an evolution equation similar to Eq. (3). The algorith
presented in this work should provide a useful tool in the numerical modeling of the
systems.
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